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Solitary waves in the 44 + h 4 3  model with and without 
dissipation 
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SHo Paulo. Brazil 

Received 20 July 1987 

Abstract. It  is shown that in the ( I  + 1)-dimensional real 9 4 + A ~ 3  model a new non- 
oscillating kink-antikink solution exists. For A = 0 it reduces to a single 414 kink as the 
second constituent disappears at infinity. We calculate the repulsive force between kink 
and antikink, generated by the Ad3 term. From this and the doublet state we find a 
quantitative approximation for the attractive force between a d4 kink and antikink. In the 
presence of a dissipative force a d ,  the doublet solution is stationary while single-kink 
solutions with a-  and A-dependent velocity exist. 

1. Introduction 

Besides the well known 44 theory, an extension to the real 44+A43 model has also 
been considered in physics [l-41. In particular, it has been used in the construction 
of the (3 + 1)-dimensional Friedberg-Lee model [ 1-31 in elementary particle physics. 
For this reason, and also because kink solutions do not exist for A # 0, it is, already 
in 1 + 1 dimensions, interesting to find and discuss its solitary-wave solutions. 

The Lagrangian density of the model is 

where 

V ( 4 )  =a44+~A43-$+2+ V ,  A =real V, = constant (1 b )  

is the potential energy density. To keep the notation simple we choose the coefficient 
of the self-coupling term a44 as g 2  = 1 and that of the mass term as m2 = 1. This is 
possible without loss of generality since the field 4 and space and time coordinates x 
and t can be rescaledt. When travelling wave solutions 4(x, t )  = y ( x  - u t )  are con- 
sidered, the field equation reduces to the ordinary differential equation 

d2y/dz2 = y3 + Ay2 - y z = y ( x - u t )  y = (1 - u 2 ) - " 2  U =constant. 
(2)  

+For  positive g2 and m 2 :  d + m t / g ,  x + x / m 2  I +  t /m (and A +gmA). If  the mass term is positi!eIl, 31, 
say o($)=i$"+$d3+$$'  and A2>4 ,  then d = d + c ,  where c solves c 2 + i c + l  = 0 ,  transforms V ( 6 )  into 
V(d)=$d4+(f i+c)413--f( l  - c 2 ) d ' + ~ c 4 + f ; \ c 3 + $ c 2 .  Because of i 2 > 4 ,  both so!utipns c are real and one 
is in the interval - 1 < c < 1 such that -;(! - c2)  c 0. 4 is also the condition for V (  4) to have its extremum 
values at three different real values of 6. 
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A characteristic difference between the d4+A@’ model and pure 44 theory is that 
the term tA4’ destroys the symmetry under 4 --$ -4. Therefore the two vacua of the 
theory (minima of V )  in 

4- = -+A + ( I  +:A’)’ (3) 

which are degenerate for A = 0, have different energies for A # 0. The perturbation 
$Ad3 removes the degeneracy of the vacua and for this reason does not permit kink 
solutions to ( 2 ) .  

In 9 2 we derive particular solutions to (2) and among them discuss a new kink- 
antikink doublet state and  its dissociation for very weak coupling. The doublet solution 
is possible because the term Ay’ in ( 2 )  generates a repulsive force, which at a certain 
distance compensates the attractive force between kink and antikink. Both forces are 
calculated in P 3. In § 4 a frictional term -CUI$, = c r y  d y / d z  is introduced on the LHS 

of (2). Then single-kink solutions, with cy- and A-dependent velocity, can be re- 
established in analogy with damped and driven 44 kinks. 

2. An exact kink-antikink solution 

A first integral to ( 2 )  is 

; ( d y / d ~ ) ~  = ay4+fAy3 -iy’+tC =: P ( y )  14) 

which can be integrated in terms of elliptic functions. For certain values of the 
integration constant C = C(A), such that two of the zeros of P ( y )  = 0 are equal, 
particular integrals of (2) exist. The conditions for two equal roots y ,  = y 2  = a of 
P ( y )  = 0 are 

a (a ’+Aa- l )=O 

C =3a4+3Aa3-2a’. 

Equation ( 5 a )  has the solutions 

a = O  U = -;A * (1 + $ * ) I / ? = :  

Using in ( 5 b )  the values (6) for a, one gets from (4) 

[ dw/[w(w’+ E w +  F)’’’] = +[ d z / J 2  

w = y - a  

E =4a+$A ( 7 c )  
F = 6a2+4Aa - 2. ( 7 d )  

From the denominator of ( 7 a )  one sees that (at least for real A )  P ( y )  = 0 cannot 
have three (or four) equal roots. This would require F = 0 (and E = O ) ,  in contradiction 
to F = -2 for a = 0 and  F = 2a’+ 2 > 2 for a = y ,  . There is only one other special case 
possible, namely that P ( y )  = 0 has two double roots. Then i t  is necessary that E ?  = 4F, 
i.e. a 2 + i A a  - 1 - $ A 2  = 0. The latter equation is compatible with ( S a )  only for A = 0 
and a = y ,  = *l. One obtains the well known 44 kink. 

For a = 0 the solution 

y = w = -4/[(8 + $ A 2 ) ” 2  sin(z - zo)  - $ A ]  (8) 
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is oscillating. Further, for real z it is either not real (if  the integration constant zo is 
not real) or it has poles (if zo is real), and therefore will not be discussed further. 

F o r a = y ,  (7a,d)yield F = 2 a 2 + 2 > O a n d  

~ = - g / [ l - ( g - E ) ~ / 4 F ]  g = exp[s(tF)”’(z - zo)] s = *l .  (9) 

This solution was recently mentioned by Su and Gu [4]. They refer to it as ‘another 
specific soliton solution’ which ‘cannot reduce to the kink-antikink solution when 
A + 0’, and consider it only in the half-interval where the argument in the exponential 
is positive. This restriction suppresses an important part of the solution (9). We will 
now discuss the solitary-wave content of this solution. 

For a = y ,  ( 7 c )  yields 

E = E ( A ,  y,) = E,(A) = - f A  *2(4+ A’)”* ( l oa )  

that is E+(A)>O and E _ [ A ) < O  for all real A. In order that the solution (9) be real 
and finite for all real z ,  the exponential g must be real and of the same sign as - E ( A ) ,  
for real z. Therefore, the (so far) arbitrary constant z,, must be real if a = y -  ( E  = E -  < 0), 
while it must have an imaginary part Im zo = i r (2 /F)”’  if a = y+ [ E  = E+ > 0). As ( 2 )  
is translationally invariant, we set Re zo = 0 and thus 

g = g+ = -exp(s(fF)”’z) i f A > O  ( lob)  

g = g- = +exp(s(fF)”’z) if A < O .  (10c) 

$A2T:A ( 4 +  A’)”’> T4A (4+ A2)”’ .  (10d) 

Secondly, the condition E > 4 F  must be fulfilled, yielding 

For A > 0 the inequality (10d) is true with the negative sign ( a  = y+) ,  and for A < 0 
with the positive sign ( a  = y- ) .  In conclusion, (9) provides the solitary-wave solution 

Y = w ( E + ,  g+)+y+ for A > 0 (1 l a )  

y =  w(E- ,g_)+y-  for A CO. (1lb)  

We now suppose A 2 0 and discuss (1 1 a ) .  In the limit A = +O we find E+ = 4, F = 4, 
g, = -exp( s a z )  and 

y(z)  = I - 16g+/(-g:+8g+) =tanh(sz/d2-ln&). (12) 

The solution (1 l a )  reduces to a kink ( s  = 1) at x(  t )  = ut + A y - ’  In J8 or to an 
ant ikink(s=-1)at  x ( t )=u t -&y- ’ lnd8 .  ForO<A<<l  ( l l a )  is ,uptof i rs torder in  
A, 

y =  1 -$A + 16(1 -fA)/[g+-8+:A +8A/(3g+)] 

g + =  -exp(sJZ(l-$)-) .  (130) 

For g+ = -8, i.e. at 

x = X I ( ? ) =  u t + s  In 8 / [ a y ( l  - $ A ) ]  (136) 

one finds the centre of an approximate kink (s = 1) or antikink (s = - l ) ,  in agreement 
with (12). On the other hand, when 8A/3g+=-8, i.e. at 

x = x 2 ( t ) =  v t+s  ln(&i)/[Ay[l - + A ) ]  (13c) 
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we have the centre of an approximate antikink ( s =  1) or kink ( s= -1 ) .  For both 
choices, s = 1 and s = -1, the kink and antikink move with equal velocity U, -1 < U <  1, 
at a constant distance 

d ( A ,  U ) =  Ixz-x , l~ ln(24/A) / [JZy( l  -;A)]. (14) 

To conclude, the solution ( l l a )  represents a doublet formed from a kink and an 
antikink. The kink is always to the right of the antikink. This is because the solution 
(1 l a )  is also ‘attracted’ by the other vacuum y -  and satisfies y ( z )  y ( * ~ )  = y+ . Finally, 
one should mention the factor l / y  in formula (14) which describes the Lorentz 
contraction of the doublet state. 

Analogous results are obtained from (1 1 b) for -1 << A < 0. But kink and antikink 
are interchanged and In A + In ( - A ) ,  as (2) is invariant under y + -y  and A + -A. That 
the kink is now to the left of the antikink is compatible with, and necessary because 

The doublet state (1 1) is qualitatively different from the oscillating bound states, 
exact and with amplitude between 0 and 257 in sine-Gordon ( S G )  theory (‘breather’) 
[5], and approximate or asymptotic in 44 theory [6-91. There kink and antikink 
periodically exhibit their non-linear interactions. The solution (1 1) is also different 
from the SG kink-antikink doublet [ 51 which describes a kink and antikink approaching 
each other with opposite velocities, colliding at some finite time and afterwards again 
emerging with their original velocity and shape. One concludes that the term Ay2  in 
(2) is responsible for a repulsive force F, between a kink and an antikink. When both 
are at distance (14) from each other, F, compensates the attractive force Fa commonly 
supposed to exist between them. For A = 0, kink and antikink cannot exist at a finite 
constant distance from each other, as there is only the attractive force between them. 
Therefore the constituent at the position (13c) disappears at x = zcc as s ln/A 1. 

One can understand the limit A = S O ,  i.e. the different asymptotic values of (1 l a )  
and (12) also, by considering the motion of a point mass in a potential V(y) = 
-ay4 - :Ay3 + fy’ . The equation of motion is d2y/dt2 = -d Vldy. When the point mass 
has total energy corresponding to the particular solution (1 l a )  and a velocity dy/dt  < 0 
at time t = to,  it reaches the turning point y,,, > y -  at a (for A > 0 finite) time t ,  > to ,  
and then returns to y = y,, where it arrives asymptotically at t = CO. For A + 0 one gets 
y,,, + y -  and t ,  + CO; i.e. for A = 0 the point mass tends asymptotically to y -  and does 
not return to y = yr. A corresponding analogy exists for A s 0. 

of, y ( 2 )  2 y ( m )  = y - .  

3. Quantitative expressions for the forces 

That the term Ay2 in (2) simulates a repulsive force between the kink and antikink in 
the solution (1 1)-independently of the sign of A-can be seen from the transformation 

y = U -‘A 3 ’  

Then (2)  becomes 

d2U/dz2= u3 - (1 + : A * ) u  + f A  + & A 3 .  (15b) 
We consider -1 << A << 1 and neglect terms of second and third order in A. To order 
A, kink and antikink do not experience any x-dependent deformation by the force SA 
[lo]. In (11) they satisfy boundary conditions at infinity which correspond to U = 
i l  -:A and are compatible with the force ;A. (The extremum value of the solution 
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( l l ) ,  of course, is different from y ,  already as tanh(d/2J2)=1-(~lAl)”’,  d = 
(1/42)  ln(24/IAl).) Thus the only effect of the force f A  in order A is an  acceleration 
[ 101; for a kink it has the same sign as A. For the antikink the sign is opposite because 
y +  - y  in (2),  or  U -+ -U in (15b), is equivalent to A -+ -A.  Since in ( l l ) ,  for A > 0, the 
kink is to the right of the antikink, and for A < 0 to the left, the force f A  has a repulsive 
effect. Obviously, it is independent of the distance between kink and  antikink, and  
does not lead to a relative force between two kinks, or between two antikinks. 

The repulsive force acting on the RHS constituent in the solution ( 1  1 )  can be written 
in the form 

F, = $ 1 ~  1 .  (16a) 

Let q >> 1 denote the general distance between kink and antikink, and Fa( q )  the attractive 
force acting on the RHS constituent in its rest system. For q = d ( A ,  U = 0) one finds 
from (14) and (16a) 

F,(q=d)=Fa[(1/J2)ln(24/IA1)1=-Fr=-~lAI.  (166) 

F a ( q )  = -8 exp( - f iq ) .  (16c) 

Using (14) with 1 -:A = 1 and expressing A by q one gets 

This result is valid for - 1  << A << 1 or ln/Alc< - 1 ,  and thus for sufficiently large q such 
that the single kinks can be distinguished in the doublet state. The LHS constituent in 
the doublet experiences the forces -Fr and - F a ( q )  (where q again is considered 
positive). 

Equations (16a) and (16c) show that the resulting force F , + F a ( q )  between kink 
and antikink is attractive when their distance q is less than the equilibrium distance 
d, and repulsive when q is greater than d. Thus the solution ( 1  1 )  is unstable against 
small changes of the distance d and cannot be considered as a bound state. 

In (13a) one can also observe a slight increase of the kink width by the factor 
G = 1 / ( 1  -:A) in order A and for q = d ( A ,  U). An interpretation of this is that those 
parts of kink and  antikink which have a slightly smaller distance are attracted more 
strongly than those with a larger distance than d. For general q >> 1 the factor G has 
the form 

(16d) G = 1/[ 1 - 6 exp( - f i q ) ]  = 1 + 6 exp( - d q ) .  

To complete our results we show that the driven 44 equation 

d 2 f / d z 2 = j 3  - ? + $ A  (170) 
for -(4/27)1’2<$A < (4/27)’/’ has an  exact particular solution which is similar to the 
solution (9) of ( 2 ) .  A first integral is 

(d j /dz) ’=4F4- jZ+f3Aj+e=:  Q ( j ) .  (17b) 
For the choice e = 3b4/2 - b’ of the integration constant the equation Q ( 9 )  = 0 has a 
double root and  ( 1 7 4  the particular solution 

The constant b = b(A) solves the cubic equation b3 - b +:A = 0, and the solutions 
b=b,=* l -&i+O(A’)  may bechosen. 
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The solution (17c) can b,e evaluated in an analogous way to equation (9). For 
O C A < <  1, b =  b,, z0=i.rr(2/F)”’ one finds a result which differs from (13a) to order 
A only by the additive constant $A.  Therefore the results (16c) and  (16d) can also be 
obtained from the solution (17c). The important (although expected) conclusion to 
be drawn is the following. Since the exact solutions (9) and  (17c) satisfy different 
boundary conditions y(--03) =?(CO) = *l - ? A  and ?(-a) = F(s) L- *l -;A, but other- 
wise correspond with each other to order A, they indicate that a constant x-independent 
shift d ( x ,  1 ) -  d ( x ,  [)+constant of the kink and  antikink does not influence their 
interaction in leading order. 

4. ‘Damped kinks’ 

Finally, we mention that (2) with a frictional term, i.e. 

d2y/dz‘ + CYYU dY/dz = y’ + Ay’ - y 

y = a -t h/[ l  +exp(f (z  -zO))l  

a>O 

has kink solutions of the form 

with a- and A-dependent velocity and real integration constant zo. This is suggested 
by corresponding results for the damped and  driven 4“ equation [ 113 and  the transfor- 
mation (15a). The ansatz (18b) yields a kink or its antikink for 

a = y _  h = y+ - y -  = 

f= * ( 2 + f A 2 ) 1 ’ 2  v = 7,4142 (19a) 

and two kink solutions or  their antikinks for 

a = O  h = y -  or  h = y +  

2f2= 1 - A h  > 0 a yv = (1 +f’)/f: 
All these solutions correspond closely to the damped and driven 4“ kinks [ 11, 121 and 
therefore need no further discussion. They exist because the frictional loss of energy 
is equal to the decrease of the kinks’ potential energy as previously explained for 44 
theory with friction [ 131. This compensation mechanism determines the absolute value 
and the sign of the velocity. (The solutions (18b) and (19) exist also for a < O .  But 
this situation is less physical since the term a y u  dy /dz  now adds energy to the system. 
Each kink has the opposite velocity to that for a > 0 and, when moving, increases its 
potential energy.) 

Clearly, (18a) cannot have solutions with arbitrary velocity, since the frictional 
term destroys the relativistic invariance. The doublet (11) solves (18a) only for v = O .  

5. Summary 

In the 44+A4’ model a new kink-antikink doublet solution exists, where both con- 
stituents move at a constant distance from one another. It is unstable against small 
changes of the equilibrium distance, i.e. such perturbations are expected to cause 
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complete dissociation or approximation of the two constituents. The serious instability 
is that for distances q > d. Namely, the asymptotic values of the solution (1 l ) ,  y+ for 
A > 0 and y _  for A < 0, d o  not correspond to the vacuum (global minimum) of the 
theory, but only to the second (local) minimum of V ( 4 ) .  Therefore the solution (11) 
cannot be related to the non-topological soliton field [ 1-31 which has been studied as 
a model for quark confinement and which will exist only in the presence of quarks or 
other suitable fields. 

The physical content of (11) is that it permits an  interesting insight into the 
interaction between a d4 kink and  its antikink, leading to the exponential (approxima- 
tive) law (16c) for the attractive force F , ( q )  and to the enhancement factor (16d) for 
the width. For this result it is relevant that both constituents in the doublet (1 1) in 
order A, -1 << A << 1, d o  not experience any x-dependent deformation by the repulsive 
force (160) and that an  x-independent shift +(x, t )  .+ 4(x ,  t )  + constant, equal for kink 
and  antikink, does not change their interaction. 

Another complementary result is that the 44 kink and  its antikink, destroyed by 
the perturbation A43, can be re-established in the form (18b) and (19a) by a frictional 
term. This may be of practical interest for problems where the 44 model has been 
applied and  where relativistic invariance is not essential, e.g. for non-linear excitations 
in linear polymeric chains such as polyacetylene [ 141. It is probably realistic to permit 
small 43 perturbations of the 44 potential and an  energy transfer from the kinks to 
the chain (by friction). Also, two other kinks and their antikinks (18b) and (19b), 
connecting a minimum of V in y = y -  or in y = y+ with the maximum in y = 0 exist. 
All the solutions are possible because friction provides a simple mechanism to ‘absorb’ 
the potential energy, which becomes ‘free’ during the motion of a kink if this connects 
non-degenerate extrema of the potential. 
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